

ENERGY EFFICIENCY IN INDUSTRIAL REFRIGERATION SYSTEMS

Presented by:

Dave Moser

DOWN ON THE FARM

HOW MANY CHICKENS DO WE EAT PER HOUR IN THE U.S.?

a. 1,000
b. 10,000
c. 100,000
d. 1,000,000

BLAST FREEZER

INDUSTRIAL REFRIGERATION USES

- Refrigerated storage
 - Frozen
 - Unfrozen
- Blast freezing
- Food processing
- Freeze drying

SIMPLE AMMONIA OVERFEED SYSTEM

WHERE IS THE ENERGY USED?

65%

15%

15%

5%

\Lambda Cascade Energy •

ARE WE TALKING NEW OR EXISTING SYSTEMS?

Both.

The concepts discussed in this presentation apply to both new and existing systems.

COMPRESSORS

Usually there's a few of them

9

WHAT ARE SOME TYPICAL EE OPPORTUNITIES?

Cascade Energy*

MINIMIZE LIFT TO IMPROVE EE

Lift = condensing pressure minus suction pressure

- Minimize condensing pressure
 - 1.5% compressor energy savings per °F decrease in condensing temperature
- Maximize suction pressure
 - 2% compressor energy savings per °F increase in suction temperature

CONDENSING PRESSURE – HOW LOW CAN YOU GO?

Common limits:

- Hot gas defrost
- Heated zones
- Icing or other winter issues
- Water defrost and common sump
- Oil separator performance
- Gas-powered valves or unloaders
- Liquid injection oil cooling
- Screw compressor oil carryover
- Underfloor heating

- Pumper drum operation
- Direct expansion coils
- Process or door hot gas
- Inadequate liquid pressure to serve loads
- Condenser fan and pump energy concerns
- Misperceptions about volume ratio and efficiency
- Tradition

SUCTION PRESSURE – HOW HIGH CAN YOU GO?

Limits:

- Room temperature setpoint
- Evaporator design
- Piping restrictions

Example:

0°F room temperature setpoint, evaporator TD = 10°F, 2°F piping losses.

Suction temperature = $0^{\circ}F - 10^{\circ}F - 2^{\circ}F = -12^{\circ}F$.

COMPRESSOR PART LOAD PERFORMANCE

14

MINIMIZE NUMBER OF OPERATING COMPRESSORS

15 3/15/2017

TOP LOW COST COMPRESSOR EE OPPORTUNITIES

- Optimize (minimize) condensing pressure
- Optimize (maximize) suction pressure
- Optimize compressor staging
- Calibrate sensors

TOP CAPITAL COMPRESSOR EE OPPORTUNITIES

- Add VFD to compressor(s)
- Stage compressors from central control system
 - Trim with reciprocating or VFD screw compressors

CONDENSERS

Usually there's a few of them

SIMPLE AMMONIA OVERFEED SYSTEM

WHAT ARE SOME TYPICAL EE OPPORTUNITIES?

CONDENSER WATER DISTRIBUTION

Common issue: plugged nozzles

Cascade Energy*

CONDENSER WATER DISTRIBUTION

From bad to worse: plugged and missing nozzles

CONDENSER CAPACITY AND EFFICIENCY

CONDENSER FAN CONTROL

Run all fans at the same speed

CONDENSER STAGING

Goal: wet coils and mid-range fan speeds

CONDENSER WATER TREATMENT

New condenser

Cascade Energy*

CONDENSER WATER TREATMENT

Results of bad water treatment

CONDENSER WATER TREATMENT

Impact of scale

Cascade Energy

TOP LOW COST CONDENSER EE OPPORTUNITIES

- Optimize water delivery (pumps and nozzles)
- Run the most efficient condenser first
- Optimize staging / part load performance
- Improve water treatment

TOP CAPITAL CONDENSER EE OPPORTUNITIES

- Utilize wet bulb approach control of condensing pressure setpoint
- Add VFDs to condenser fans
- Stage condenser pumps and fans from central control system

EVAPORATORS

Usually there's a lot of them

\Lambda Cascade Energy •

SIMPLE AMMONIA OVERFEED SYSTEM

EVAPORATOR VALVE GROUPS ARE COMPLICATED

COOLING MODE

\Lambda Cascade Energy •

FROST HAPPENS

Cascade Energy*

DEFROST TO THE RESCUE!

PUMP DOWN MODE (START OF DEFROST)

HOT GAS MODE

\Lambda Cascade Energy •

BLEED MODE (END OF DEFROST)

WHAT ARE SOME TYPICAL EE OPPORTUNITIES?

FIRST STEP: CLEAN THE COILS

\Lambda Cascade Energy •

EVAPORATOR FAN CONTROL

EVAPORATOR GROUP FAN CONTROL

EVAPORATOR CONTROL STRATEGIES

- Control fans first, then liquid
 - Cycle fans off when liquid is off
- Set minimum speed at 40-50%
- Set maximum speed at 80-90%
 - Only allow 100% if necessary

EVAPORATOR FAN/MOTOR/VFD ISSUES

- Burned-out fans (bypassing air)
- Fan blades installed backwards or turning in wrong direction
- VFD/motor problems (e.g., VFD bypasses)

ZONE TEMPERATURES AND SETPOINTS

- Are the temperature sensors reading accurately?
- Are the temperature setpoints appropriate?

ROOM	ZONE	SET GRP NUM	POINT TEMP DEGF	zone Temp Degf
FRZR 3 FRZR 4	8 9	G1 G1	-2.0 -2.0	-1.7 -3.1
FRZR 2	5 6 7	61 61 61	-2.0 -1.5 -2.0	-1.9
FRZR 1	14 15 16 17	G1 G1 G1 G1	-1.0 -1.5 -2.0 -1.5	-2.0

TOP LOW COST EVAPORATOR EE OPPORTUNITIES

- Clean evaporator coils
- Improve fan controls (cycling, VFDs)
- Re-commission valves & regulators
- Fix fan/motor/VFD issues
- Verify/increase temperature setpoints
- Calibrate temperature probes

TOP CAPITAL EVAPORATOR EE OPPORTUNITIES

- Add VFDs to evaporator fans
- Control evaporators from central control system
 - Group fan speed control
 - Better defrost management and scheduling

WHERE DOES DEFROST HEAT GO?

SYSTEMATIC DEFROST OPTIMIZATION

- 1. Keep frost out
- 2. Use the cheapest form of defrost
- 3. Start with clean coils, fix problem evaporators
- 4. Optimize (minimize) defrost frequency
- 5. Optimize pump down duration
- 6. Optimize defrost hot gas pressure
- 7. Optimize (minimize) defrost duration

FOR MORE INFO

\Lambda Cascade Energy •

THE LAST WORD: SAFETY FIRST

QUESTIONS?

SIMPLE CHILLED WATER SYSTEM

A BIT MORE COMPLICATED

(higi

\Lambda Cascade Energy •

SCREW COMPRESSOR SLIDE VALVE CONTROL

Cascade Energy

SCREW COMPRESSOR VOLUME RATIO

Internal volume ratio, or VI (volume index)

- Initial gas volume / final gas volume
- Typically 2:1 to 5:1. Ideal VI varies by application.

